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Abstract

A new nonlocal hydrodynamic approach to describe structured media is developed[ According to this
approach the nonlocal and spin properties of a medium are closely correlated[ The concrete kind and scale
of the medium structure resulting from the strain process are de_ned by the initial and boundary conditions
in a nonunique way due to the branching of solutions to the nonlinear problem[ As a consequence\ in the
same medium localization of the strain process can be realized either in the form of shear banding or
rotational motion[ As a test task the well!known Rayleigh problem on nonsteady motion of a plate in
viscous media is solved to show that the degree of nonlocality is proportional to acceleration of the plate[
The solution obtained is then used to explain experimental results on shock!induced shear bands and vortex
structures in metals[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

l\ L typical lengths of an internal structure and hydrodynamical ~ow
` hydrodynamical variable
o\ t nonlocality and memory scale parameters
G hydrodynamical gradients
P dissipative ~uxes
L relaxation transport kernels
k transport coe.cients
S\ s parameters of the model transport kernels
8 deviation from the NavierÐStokes value of a hydrodynamical variable
D\ L\ J linearized operators
B boundary of a system
G Green function
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F nonlinear functional
D deviation from the NavierÐStokes value of an integral characteristic
n kinematic viscosity
u shear velocity
U\ Uþ velocity and acceleration of the plate
y coordinate normal to the plate
M memory function
a\ g concrete model parameters for the Rayleigh problem

0[ Introduction

A number of processes of high!velocity straining in solids are known often to have quite de_nitive
features of hydrodynamical ~ow[ First of all it concerns an interaction of shape charge and target\
high!velocity penetration of long rods and so on[ The limits of applicability of hydrodynamical
model conception in the theory of high!velocity collisions of solids have been analyzed com!
prehensively "see\ for example Hohler and Stilp\ 0889^ Zlatin and Kozhushko\ 0871#[ In particular\
analysis performed in the paper "Zlatin and Kozhushko\ 0871# and comparison of its results with
well!known experimental data permits one to conclude that the concept of ideal incompressible
liquid may be used for the high!velocity interaction of solids to be described in a quite narrow
range of penetrator velocities[ For example\ use of the Bernoulli equation gives an acceptable
precision in calculations of crater formation processes within the impactor velocity range\ where
the strength of material has no in~uence but the compressibility still in~uences the results of
collision simulations[ This requires extension of the hydrodynamical model for adequate descrip!
tion of these processes[

On the other hand\ the use of the hydrodynamical description of processes in solids even under
lower impact velocities\ where as a rule the elasticÐplastic description is commonly used\ can also
be justi_ed due to the fact that during the shock wave passage the material is in the so!called
unstable state[

In both cases the medium ~ow shares the common properties and require the general approach
to describe]

"i# the kind and scale of elementary carrier of deformation for the shock wave propagation
problem and the kind and scale of structure elements for liquid ~ow must be de_ned by the
boundary and initial conditions of the nonlinear problem in a self!consistent manner[

"ii# The kind of kinematical mechanism for dynamic straining "translational or rotational# as
well as for hydrodynamical ~ow must also be de_ned by the imposed conditions and must
automatically change when the strain rate changes[

The above considerations constitute a base to extend the hydrodynamical description for the
high!velocity processes in dynamically loaded solids[

In this paper an attempt is made to show that in order to extend the hydrodynamical description
it is necessary to transit from ideal liquid approach\ and even from classical local approach\ to
non!local hydrodynamics of structured liquids[ In Section 1 on the basis of the latest experimental
data on high!velocity interaction of solids and shock wave propagation processes\ the main
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principles and requirements for the sought theory are formulated[ In Section 2 the theoretical basis
for the self!consistent nonlocal description of medium with internal structure is given in details[
Finally\ in Section 3 the model problem on a non!steady motion of in_nite plate in viscous
structured medium "the so!called Rayleigh problem# is considered for revealing the most speci_c
features of medium ~ow[ It is shown\ in particular\ that relative accelerations of structure elements
de_ne both the non!local e}ects and the e}ects related to the previous history of straining[ The
obtained results con_rm that the new theory presents an adequate description of the non!equi!
librium processes in solids under dynamical loading and describes the experimental results without
introducing any empirical parameters[

1[ Experimental evidence of nonlocal approach

The hydrodynamical theory of high!velocity interaction of solids has to take into account
mechanical features of target and impactor] viscosity\ compressibility\ strength[ Alekseevskii "0855#
and Tate "0856# have independently included into the Bernoulli equation dynamic strength of
target and impactor materials]

Y¦0
1
rp"v−u#1 � 0

1
rtu

1¦R[ "1[0#

Here Y is the dynamic strength of impactor material and R is the same for the material of target\
v and u are the particle velocities in the material of penetrator and target\ respectively[ By using Y
and R as _t parameters the theory of Alekseevskii "0855# and Tate "0856# enable the experimental
penetration curve for an arbitrary projectileÐtargetÐmaterial combination to be described[
However\ if the same targetÐmaterial is used in combination with di}erent projectile materials\ the
R value will not be constant and equal in each and every case[ The same may be said about Y\ if
only the target material is changed[ This means that the theory based on the modi_ed Bernoulli
equation and which deals with ideal incompressible ~uid with arti_cial empirical parameters\
cannot be considered as adequate describing even the quasistatic stage of penetration process[

Some alternative description of high!velocity interaction of solids seems to be a using of Gins!
burgÐLandau equation]

0
1
rtu

1¦rTnTo¾¦
0
1
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where cT � zcl = ct\ cl and ct are the velocities of transverse and longitudinal elastic waves[ As
distinct from eqn "1[0#\ eqn "1[1# does not involve the _t parameters[ However\ as has been shown
in paper "Balankin\ 0880#\ that equation has a strictly limited range of application de_ned by
continuity of viscosity value for penetrator and target materials[ In reality\ as it is seen for D!05
alloy "Fig[ 0#\ in the process of high!velocity straining the viscosity can change more than two
orders[

One of the main reasons for theory and experiment discrepancy seems to be a contradiction
between phenomenological models a}ecting the smooth change of strength with the shock velocity
increasing and fundamental laws of thermodynamics of the irreversible processes[ In particular\
phenomenological models cannot take into account the tendency of open systems\ which are far
from equilibrium state\ to self!organization by means of formation of the so!called dissipative



T[A[ Khantuleva\ Yu[ I[ Mescheryakov : International Journal of Solids and Structures 25 "0888# 2094Ð20182097

Fig[ 0[ Dependence of viscosity on the strain rate in D!05 aluminum alloy "after Balankin#[

structures[ During the high!velocity interaction of penetratorÐtarget couple\ which is certainly a
typical open system\ change of the kinematical mechanism of straining can occur under some
strain!rate conditions[ Typical example testifying the sudden change of resistivity of material
accompanied by changing the kinematical mechanism is presented in Fig[ 1[ One can see\ that
under velocity of 899Ð0099 m:s the penetration length in Pb and Cu increases in a step!like manner[
This phenomenon cannot be described in the framework of the hydrodynamical model of ideal
incompressible liquid even if the _t parameters Y and R are introduced into the model[

The transition from laminar to turbulent ~ow has also been found during the interaction of
plane shape charges and annealed CrÐNiÐMo steel "Savenkov et al[\ 0889#[ Analogous phenomenon
was found during the spall!strength tests of the same steel "Barakhtin et al[\ 0880#[ Under impactor
velocity of 249 m:s the spall strength of material suddenly increases[ Microstructure investigations
of specimens after shock tests reveal the change of kinematical mechanism of deformation[ Instead
of shear banding which can be classi_ed as a translational mechanism of dynamic straining at the
mesoscopical scale level "9[0Ð09 mm#\ numerous rotational cells of the same scale level have been
found[

The applicability of hydrodynamical approach for the high!velocity processes in solids even
under lower impact velocities can be justi_ed due to the fact that during the wave passage the
material comes into the so!called unstable state[ Evidence for the structure instability of solids
during the propagation of elasticÐplastic waves can be seen\ for example\ from the micrograph\
presented in Fig[ 2[ It demonstrates the chain of rotational cells "vortexes# in copper target loaded
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Fig[ 1[ Dependence of penetration depth on the impact velocity after collision of copper disk with the target from] 0[
lead\ 1[ copper "after Balankin#[

under uniaxial strain conditions with the impact velocity of 059 m:s "Mescheryakov et al[\ 0881\
0883#[ Element analysis of inner structure of rotational cells shows that they consist of the same
material as the matrix[ This means that these cells represent the {{frozen|| vortex formations of
material itself "not inclusions#[ One of the remarkable features of these rotational chains is that\
being elongated in the wave propagation direction\ they cross the grain boundaries without change
of their direction "see micrograph in Fig[ 3#[ This certainly means that during the plastic front
passage material is really in an unstable state\ and grain boundaries disappear as strong obstacles
for the motion of micro~ows[ Narrow region between adjacent micro~ows of di}erent velocities
is then transformed either into shear band or rotational "vortex# cells depending on the degree of
nonlocality of dynamic deformation process[ An analogous situation is known to appear on the
boundaries of two layers in liquid*the so!called {{cat!eyes|| formations in the Helmholtz instability
phenomenon[ It was also pointed in "Mescheryakov et al[\ 0881\ 0883# that the cross!section of
rotational cells along the chain changes non!monotonously*their dimension reaches two
maximums with gradual decreasing to the edges and middle of the chain "see Fig[ 2#[ Sometimes\
in the middle of a chain instead of rotations there is a short shear band[ Comparison with
positions of maximums for time!resolved pro_le of particle velocity accelerations curve obtained
by di}erentiating the particle velocity dispersion "see Fig[ 4# permits the conclusion that the size
of rotation correlates with the particle acceleration[ At the same time\ shear banding occurs when
acceleration changes its sign and particle velocity dispersion is maximum[ On the basis of these
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experimental data it has been concluded that the di}erence in acceleration of micro~ows is
responsible for the rotational mechanism of localization\ while the di}erence in particle velocities
is responsible for shear band[

Although the aforedescribed liquid!like behavior of medium was found in a shock compressed
solid "copper# this phenomenon cannot be described in the framework of traditional elasticÐplastic
theory[ On the other hand\ it also cannot be described using classical hydrodynamics of ideal liquid
or NavierÐStokes equations[ These equations are local\ valid for structureless media and do not
involve the change of ~ow regime in a wide range of imposed conditions[

Thus\ we come to the necessity to extend the hydrodynamical approach and to take into account
the aforedescribed phenomena[ This supposes that the sought theory\ being hydrodynamical\
would be capable to provide both rearrangements of structure scales and change of kinematical
mechanisms of ~ow[ In particular\ it must provide as well a transition from laminar to turbulent
~ow in the case of high!velocity penetration processes as transition from shear banding to rotational
motion of medium in case of shock wave propagation processes[

The sought theory must be self!consistent\ i[e[ must take into account an in~uence of overall
deformed volume\ including the boundaries\ on material ~ow in a local region[ The parameters of
that theory "scale of structure elements\ viscosity\ degree of micropolarization for the momentum
media# must integrally depend both on the boundary conditions and whole ~ow process while
accounting for the balance relations for density\ momentum and energy[

The enumerated requirements lead to the necessity to develop an extended nonlocal hydro!
dynamical description of structured media[

2[ Self!consistent nonlocal hydrodynamical approach to describe nonequilibrium transport

processes in structured media

2[0[ The scale parameters for structured media on hi`hly nonequilibrium conditions

The classical continuum model of media allows satisfactory description of ~ows of real media
on su.ciently large space!time scales far from the critical points and phase transitions[ According
to this model the state of a system is characterized by mean!_eld qualities which are assumed to
be governed by the di}erential balance equations[ In such a treatment one considers the con!
servation laws for a medium element which has a linear size l negligible in comparison with the
typical ~ow length L but much exceeding the scale l of the medium internal structure]

l ð l ð L[

In general the additional scale is considered to have the magnitude of a typical radius of nonlocal
correlations due to the collective interaction of medium structure elements[ Its size may vary from
the mean free path of a particle in gas to the linear scale of the medium inner structure and in
concentrated dispersed media may enclose rather many particles[ Generally\ the macroscopical
scale L is assumed to be the inhomogeneity scale for a macroscopical variable `]

L �
`

=grad `=
[

In case of a slight inhomogeneity L can be taken as being equal to the typical length of a system[
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Fig[ 2[ Micrograph of rotation chain in copper[ Arrow shows the shock wave propagation direction "magni_cation×219#[

Fig[ 3[ Micrograph of rotation chain which crosses a grain boundary[ Arrow shows the shock wave propagation direction
"magni_cation×0999#[



T[A[ Khantuleva\ Yu[ I[ Mescheryakov : International Journal of Solids and Structures 25 "0888# 2094Ð20182001



T[A[ Khantuleva\ Yu[ I[ Mescheryakov : International Journal of Solids and Structures 25 "0888# 2094Ð2018 2002

Fig[ 4[ "a# Free surface velocity pro_le in copper target loaded by copper impactor under velocity of 059 m:s[ "b# Time
history of the particle velocity distribution width[ "c# Space pro_le of the particle velocity distribution width[ "d# Space
distribution of time derivative of the particle velocity distribution width and positions of its maxima relative rotation
chain[
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So we must introduce a parameter whose value is closely connected with a choice of descriptional
level for real problems]

o � l:L

then the limit o : 9 corresponds to the usual continuum mechanics when the real medium structure
e}ects can be neglected[ The basis of this theory is the assumption that the thermodynamical state
of the macroscopical system is near to the local equilibrium one[ In the framework of the linear
irreversible transport thermodynamics the hypothesis about the linear dependencies between the
dissipative ~uxes and macroscopical gradients is the simplest assumption permitting completion
of the macroscopical balance equations[ In this manner the main equations of the theoretical
hydrodynamics*NavierÐStokes equations*have been obtained[ They are not valid to govern
~ows with large hydrodynamical gradients and high velocity processes\ when the internal structure
e}ects become essential and the usual transport coe.cients become inadequate[ The more inhomo!
geneity of a medium "less the scale L# the more the internal structure e}ects "more the scale l#\ the
more the parameter o increases and the nonequilibrium of a system increases[ In this situation
macroscopical balance equations are not entirely localized[ They imply nonlocal in space and time
constitutive relationships between macroscopical gradients G and dissipative ~uxes P]

P"r\ t# � gV

dr? g
t

9

dt?L"r\ r?\ t\ t?^ o\ t#G"r?\ t?#¦P9"r\ t#\ "2[0#

where weight factors L represent the relaxation transport kernels[ In general they are de_ned by
unknown functions of the hydrodynamical densities and depend on space and time scale parameters
o\ t[

If a deviation from the local equilibrium is small\ the scale parameters tend to zero] o\ t : 9[
The relaxation kernels reduce to the transport coe.cients\ and the relationships between gradients
and ~uxes become local and linear

P"r\ t# ½ k"r\ t#G"r\ t# 0 P9"r\ t#\k"r\ t# 0 lim
ot:9
t:9
gV

dr? g
t

9

dt?L"r\ r?\ t\ t?^ o\ t#[ "2[1#

In this sense the scale parameters can be taken as being the nonlocality and memory parameters[

2[1[ Nonlocal relationships between the dissipative ~uxes and the hydrodynamical `radients

By using the expression "2[1# we can rewrite eqn "2[0# as follows

P"r\ t# � gV

dr? g
t

9

dt?L	 "r\ r?\ t\ t?^ o\ t#P9"r?\ t?#¦P9"r\ t#[ "2[2#

Further we shall omit the symbol {{½|| above L[
These relationships had been derived from the _rst principles in the nonequilibrium statistical

mechanics "Richardson\ 0859^ Piccirelli\ 0857^ Zubarev and Tischenko\ 0861#[ In the derivation of
the nonlocal relations it was shown\ that any calculations of the relaxation transport kernels as of
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the time correlation functions required solving simultaneously the set of generalized hydrodynamics
engaged with the microscopical dynamic equations[ Herewith\ if the transport kernels or the
correlation functions are considered as given time!space functions the microscopical set is
discarded\ the whole set splits and the hydrodynamical equations become self!contained[ Taking
di}erent explicit expressions for the kernels we can get governing relationships for media with
di}erent properties and construct convenient models for any practical problems[ However\ all
attempts to introduce the nonlocal hydrodynamics as a theoretical background into the usage of
the calculating hydrodynamics and applied mechanics did not become common until the present
because of a large gap in their descriptional levels and approaches[

It must be pointed out a circumstance of great importance[ Both the nonequilibrium statistical
operator method and all other methods proceeding from the Liouville equation are valid only for
isolated systems[ However\ it is the nonequilibrium stationary states which are maintained by the
imposed _xed boundary conditions\ that are of prime interest to practice[

2[2[ Self!consistent nonlocal models and their essential features

A new trend of the nonlocal hydrodynamics developed by one of the authors of this paper
"Khantuleva\ 0871\ 0873\ 0881^ Khantuleva and Vavilov\ 0883# is a construction of self!consistent
models of the relaxation transport kernels[ Herewith\ it is supposed that the boundary e}ects
connecting the interaction of an open system with its surroundings\ can be involved as an additional
element of modeling for the relaxation transport kernels[ The nonlocal models must correspond
to general invariability and asymptotic principles and depend on a minimal quantity of parameters[

Based on these principles a d!type class of the relaxation transport kernels depending on
parameters was de_ned[ The model parameters are connected with the in~uence of the internal
structure on hydrodynamics as a whole[ The physical sense of these parameters was examined by
means of a test problems for which it is possible to compare the results with those obtained in the
kinetic theory and with the experimental data[

To account for the spatial nonlocality along the x!direction a simple model of the d!type kernel
is proposed]

L"x?\ x^ o# �
S"x^ o#

o
v 0

=x?−x−s"x^ o# =
o 1[ "2[3#

The model "2[3# corresponds to the requirement of a uniform limiting transition to the continuum
mechanics when o : 9 up to the boundaries[ It must be pointed out that the limiting transition is
_xed] o : 9\ s : 9[ The expression "2[3# is easily generalized for the three!dimensional case taking
into account the fact that the nonlocal scales along the di}erent directions oi can di}er one from
the other[

The model "2[3# includes the parameters]

o is a nonlocality parameter or the relative space correlation scales for hydrodynamical densities^
v"=j=^ o# − 9 is a d!type function of =j= depending on o as on a parameter de_ning a rate of space
relaxation of hydrodynamical correlations^
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s"x^ o# is a shift parameter making the model anisotropic and connected with polarization e}ects
incited by large hydrodynamical gradients including the boundary e}ects^
S"x^ o# is a normalizing factor characterizing the structure average e}ects\ such as an e}ective
transport coe.cient S : 0 when o : 9[

It has been shown that a medium of structure elements with _nite linear size under inhomo!
geneous _eld of stresses and o ½ 0 becomes anisotropic\ there exists spin motion due to an
asymmetrical stress tensor "Aero\ 0870#[

This aspect of the approach has close connections with the theory of multipolar ~uids "Green
and Rivlin\ 0853^ Bellout et al[\ 0881#[ But the proposed theory involves the spin properties of
structure elements implicitly due to the nonlocal reduced description which makes it di}er from
the above!mentioned one[ Generally\ in the construction of nonlocal models with o ½ 0 we have
to take into account the polarization e}ects in a medium with highly nonequilibrium conditions[

According to the self!consistent approach to the construction of the model relaxation transport
kernels the model parameters are related to any integral properties of a system either through
integral relationships including such characteristics as a ~ow rate\ sum momentum and energy\ or
by imposing additional boundary conditions[ These additional relationships for the model par!
ameters complete a set of the nonlocal equations and make the formulation of the boundary
problem self!consistent[ The self!consistence of the proposed approach is its special feature which
is followed by very important consequences[

The essential property of the approach is a preservation in the generalized hydrodynamical
equations of the integral information about a system in the description of the local hydrodynamical
_elds[ This circumstance in a radical way changes the conception of the boundary!value problems
in the nonlocal theory[ Unlike the classical continuum models the self!consistent nonlocal models
are uniformly valid up to the boundaries[ Thus\ the solutions provided by these equations can
satisfy the real boundary conditions considered to be the continuity conditions for the hyd!
rodynamical _elds[ It means that on solid boundaries we can use the non!slip conditions even for
highly nonequilibrium ~ows when the classical continuum models lead to discontinuities on
boundaries or near them[

In as much as the additional functional boundary conditions making the self!consistent model
closed can be imposed rather arbitrarily\ this approach allows prediction of the conditions for
formation of space structures with a priori predicted properties[ This is a very important advantage
of the self!consistent nonlocal models\ which may be used in a wide range of technological
applications[ Due to the branching process arising in a nonlinear system on nonequilibrium
conditions the state of a system can change discontinuously as the conditions of external interaction
change smoothly[ It means that the proposed approach gives a new possibility to describe the
structural transitions[

The main advantage of the proposed approach consists in an evident ~exibility\ e.ciency
and universality which allows applications in ~uid mechanics\ space engineering\ chemical and
microelectronic technologies\ synergetics and ecology[

2[3[ Sli`htly nonlocal approximation

Consider asymptotic expansions of the integrals "2[2# with the model kernels "2[3# when o : 9
in the one!dimensional case for a semi!axis x $ ð9\ �Ł[ Taking the Taylor series of a function P in
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the integral "2[2# in a vicinity of a point x? � x\ we obtain a di}erential constitutive relationship
instead of the integral one]

P"x^ o# � S"x^ o# s
�

n�9

ln"x^ o#
n;

1nP9

1xn
"x#^

ln"x^ o# 0 g
�

−ð"x¦o#:oŁ

djv"=j=#"oj¦s#n

� s
n

k�9

n;"an−k¦rn−k"x^"o##
"n−k#;k;

sk"x^ o#on−k^

ap � 6
MP

v"−�# � const p � 1m\

9\ p � 1m¦0\

MP
v"z# 0 g

�

z

djv"=j=#jP

rp"x^ o# �

F

G

j

J

G

f

−MP
v 0

x¦s

o 1� const p � 1m\

MP
v 0

x¦s

o 1
o

\ p � 1m¦0

"2[4#

In order to go over to a di}erential operator of the _nite order N we need to evaluate the N!th
term of the series supposing o ð 0[ Then we have to require an order relation lk ½ ok satis_ed
uniformly all over the ~ow region up to the boundaries[ Here some connections between the model
parameters follow]

l9 � a9 � 0\ s ½ o\ rk ½ ok\ x $ ð9\ �Ł[

Then taking these connections into account we get a uniform asymptotic approximation of the
order N � N"o#\ o ð 0]

PN"x^ o# � S"x^ o# s
N

n�9

s
n

k�9

an−k

"n−k#;k;
sk"x^ o#on−k 1nP9

1xn
"x#[ "2[5#

The parameters S\ s can be expanded too]

S"x^ o# � 0¦s
i

si"x#oi^ s"x^ o# � s
i

si"x#oi[

The _rst approximation is

P0"x^ o# �"0¦os0"x##P9¦os0"x#
1P9

1x
[ "2[6#

It may be called the slightly nonlocal model[ The presence of a small parameter at the highest
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derivative is an indication of possible singularities such as the boundary layers and shock waves
of a thickness O"o#[

So\ for gases the expansion "2[5# with the cross!e}ects between velocity and temperature gradi!
ents being included can be considered as a generalization of the ChapmanÐEnskog procedure for
the case of boundary!value problems[ Then the corresponding integral expression is regarded as
being its convolution[

2[4[ Reducin` of the self!consistent model formulation for the boundary!value problems to a special
type operator set

Write a set of nonstationary hydrodynamical equations for compressible viscous heat!conducting
medium with the nonlocal expressions for the viscous stress tensor and heat ~ux vector and with
the model dependencies for the relaxation transport kernels "2[3# in a symbolic operator form

D` � J"S\ s^ o#`^ "2[7#

where D` is a nonlinear di}erential operator of the _rst!order corresponding to the convective
parts of the NavierÐStokes equations^ J"S\ s\ o# is a nonlinear integro!di}erential operator cor!
responding to the dissipative irreversible parts of the generalized equations and depending on the
model parameters S\ s and on the nonlocality parameter o through the asymmetrical d!type kernels^
` are hydrodynamical variables "density\ mass velocity\ temperature#[

For the NavierÐStokes equations which results from the set "2[7# in the limit o : 9\ the following
boundary conditions must be usually satis_ed

*non!slip condition on solid boundaries]

r � rB\ ` � `B\ "2[8#

*free stream condition]

"r#n : �\ ` : `�\ "2[09#

*initial conditions]

t � 9\ ` � `c[ "2[00#

Bearing in mind that solutions to the set of nonlocal eqns "2[7# must not be discontinuous on
boundaries we have to assume the conditions "2[8#Ð"2[00# holding in the case o ½ 0[ If we use the
NavierÐStokes approximation in this case we should obtain incorrect values of the local friction
and the heat transfer[ In order to de_ne these values correctly we need to take into account
the nonlocal e}ects at o ½ 0 through which the internal structure e}ects are included in the
hydrodynamical equations[

So\ at o ½ 0 the boundary!value problem at hydrodynamical level is formulated as a set of eqns
"2[7# with the model constitutive relationships "2[2#Ð"2[3# and the boundary conditions "2[8#Ð
"2[00#[ Herewith the main di.culty to use such a model consisted in the absence of any math!
ematical ground to formulate and to solve such boundary!value problems[ However\ these prob!
lems appear to have analogs in the theory of the resonance problems in mechanics\ to which they
can be reduced by usual methods[
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Let us seek corrections 8 to the hydrodynamical variables in the NavierÐStokes approximation
`9 bearing in mind the latter is correct only when o ð 0] ` � `9¦8[ Then we can linearize the left!
hand parts of the set "2[7# and rewrite it in a form

D98 � L9"`9\ 8#¦J"S\ s^ o#"`9\ 8# "2[01#

where D9 is a linearized convective operator and J is nonlinear integro!di}erential operator[
Unlike the second!order NavierÐStokes equations\ the nonlocal ones in the form "2[01# are _rst!

order di}erential equations[ This circumstance is followed by the fact that not all of the boundary
conditions "2[8#Ð"2[00# can be satis_ed[

Supposing the NavierÐStokes values satisfy the conditions "2[8#Ð"2[00#\ the corrections must
satisfy the uniform boundary conditions

8B � 9[ "2[02#

In order to _nd 8 from a set "2[01# formally we can use only one part of these boundary conditions

8B0 � 9\ B0 k B1 � B[ "2[03#

If we know the Green function for the uniform operator equation D98 � 9 on condition 8B0 � 9\
we can represent the eqn "2[01# in the integral form

8"r\ t# � gV

dr? g
t

9

dt?G"r\ r?\ t\ t?#ðL9"`9^ 8#¦J"S\ s^ o#"`9\ 8#Ł"r?\ t?#[ "2[04#

Herewith we are left with the boundary conditions 8B1 � 9 not being satis_ed[ We must remember
that according to the self!consistent nonlocal model the parameters S\ s are assumed not arbitrary
but any functionals of the sought solution itself[ Hence we can require the remainder part of the
boundary conditions "2[02# to be satis_ed on account of the model parameters S\ s[ Substituting
the formal solution "2[04# into the condition 8B1 � 9 we get a functional relationship including
the model parameters S\ s

gV

dr? g
t

9

dt?G"r\ r?\ t\ t?#ðL9"`9^ 8#¦J"S\ s^ o#"`9\ 8#Ł"r?\ t?# � 9[ "2[05#

It is very important that in general the boundary conditions by the eqn "2[05# determine not all
tensor components of the parameters S\ s[ The de_cit relations can be obtained by imposing any
additional functional conditions connected with the integral properties of a system such as a ~ow
rate\ sum momentum and energy and others[ Herewith the given integral values must explicitly
include deviations from their NavierÐStokes values D

Fð`9\ 8Ł"D\ S\ s^ o# � 9[ "2[06#

It must be pointed out that eqns "2[05#Ð"2[06# determine either constant values of the parameters
S\ s or reduce their coordinate dimension if the integrals are taken with respect to only some
coordinates[

Now we have got a closed formulation of the boundary value problem] an operator eqn "2[04#
and the functional relationships "2[05#Ð"2[06# determining the model parameters[

This formulation can be represented in a general form
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u � F"u\ j#^ Fj"u\ j# � 9\ j � 0\ [ [ [ \ n "2[07#

with respect to unknown element u $ E in Banach space and involved n model parameters j $ Rn[
F is a nonlinear operator and Fj are nonlinear functionals[

In order to analyze the solvability problem for the "2[07#!type operator set there have been
developed two methods] the geometrical one being based on Galerkin approximation scheme
and the comparison method based on a simple iteration process[ Both methods give universal
mathematical grounds to examine a wide class of various physical situations[ By using developed
methods\ the solvability conditions of the "2[07#!type operator set have been formulated and the
algorithms to construct approximate solutions valid for boundary problems are well established[
If these conditions are satis_ed the iteration procedures converge to a precise solution "Vavilov\
0889\ 0881^ Vavilov and Yuhnevich\ 0882#[

These methods also allow successive analysis of the branching process for the nonlinear problems
while complicated practical problems cannot sometimes be analyzed by the classical methods[

3[ Nonstationary shear ~ow of structured media

3[0[ Memory effects in shear ~ow

Nonstationary hydrodynamical equations in the NavierÐStokes approximation for the struc!
tured medium ~ows have some essential de_ciencies[ These equations being of the parabolic type
cannot describe ~ows at small typical times in principle[ The last circumstance makes it di.cult to
state the Cauchy problem because in this situation it becomes necessary to establish dummy initial
conditions which di}er from the real ones[

Let us consider the Rayleigh problem which is believed to be typical for an analysis of non!
stationary e}ects[ An in_nite plane at time t � 9 is instantaneously driven in motion at a constant
velocity U9[ Then a motion of a viscous structureless medium is governed by the parabolic equation
for the shear velocity u"y\ t#]

1u
1t

� n
11u

1y1
\ "3[0#

where n � m9:r9 � const is kinematic shear viscosity[ The initial and boundary conditions follows]

u"y\ t � 9# � 9\ u"y � 9\ t � 9# � U9\ u"y : �\ t − 9# : 9[ "3[1#

A well!known solution to this problem has a form

u"y\ t# � U9 00−erf
y

z3nt10 u9"y\ t#^ "3[2#

P"y\ t# � −n
1u
1y

�
U9n

zpnt
e−

y1

3nt 0 P9"y\ t#[ "3[3#

This solution has a d!type singularity P9"y\ t# : 1d"y#nU9\ t : 9 which results from the parabolic
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type of eqn "3[0#[ If 1u:1t "y\ t � 9# � 1u9:1t"y\ t � 9#\ there exists an initial layer\ where eqn "3[0#
is not correct[ In this case we have to take into account the memory e}ects[

Generally\ in order to do this it is necessary to introduce a so!called memory function 0:tM"t:t#
with a parameter t having sense of a relaxation time[ The memory function is de_ned by the
internal structure e}ects in a medium which are essential at the macroscopic level at a given typical
velocity of a process[ When t : 9\ the memory function becomes of the type] 0:tM"t:t# : d"t#[
Then instead of the parabolic eqn "3[0# we have

1u
1t

�
1u
1t

"y\ 9#M"t:t#¦n g
t

9

dt?
t

M 0
t−t?

t 1
11u

1y1
"y\ t?#[ "3[4#

When t : 9 and "1u:1t#"y\ 9# �"1u9:1t#"y\ 9#\ eqn "3[4# tends to eqn "3[0# and then u : u9[ Now
we shall reduce the problem "3[4# under conditions "3[1# to the operator form "2[07# and shall seek
a solution as follows[ By integrating eqn "3[4# with respect to time and supposing on the right
hand side we get a _rst approximation

u0 �
1u
1t

"y\ 9# g
t

9

M"t?:t# dt?¦n g
t

9

dt? g
t?

9

dtý
t

M 0
t?−tý

t 1
11u

1y1
"y\ tý#\ "3[5#

which at the plate "y � 9# gives]

u0"9\ t# �
1u
1t

"9\ 9# g
t

9

M"t?:t# dt?[ "3[6#

If the velocity of the plate is given as a time!dependent function U"t#\ eqn "3[6# can be rewritten
as follows]

U"t# � Uþ "9# g
t

9

M"t?:t# dt?[ "3[7#

Equation "3[7# means that the plate is driven in motion not instantaneously but with _nite
acceleration[ When the value Uþ "9# is _nite we can use the expression "3[7# to determine the memory
function through the known history of the acceleration by di}erentiating eqn "3[7# with respect to
time

Uþ "t# � Uþ "9#M"t:t#\ M"t# �
Uþ "t#
Uþ "9#

[ "3[8#

This determination of the memory function is available in the case when the integral structure
e}ects are essential only on time scales small compared with the structure relaxation time during
the acceleration stage of the process[ After this stage U"t# : U9[ Then we can determine the
relaxation time as follows]

t � U9:Uþ "9# : 9\ Uþ "9# : �^ "3[09#

0
t
M"t# �

Uþ "t#
U9

: d"t#[ "3[00#
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It means that neglecting the values O"t# we get the classical case of a plate instantaneously driven
in motion[

Rewrite the expression "3[5# in terms of the memory function "3[8#Ð"3[00#

u0"y\ t# �
1u
1t

"y\ 9#
U"t#
Uþ "9#

¦n g
t

9

dt? g
t?

9

dtý
U9

Uþ "t?−tý#
11u

1y1
"y\ tý#

� u"y#U"t#¦g
t

9

dt? g
t?

9

dtý
Uþ "t?−tý#

U9

1u9

1tý
[ "3[01#

By expanding into the Taylor series the function 1u9:1tý in the vicinity of the point tý � t? and
retaining only the _rst term we get

u0"y\ t# ¼ u"y#U"t#¦g
t

9

U"t?#
U9

1u9

1y?
"y\ t?# dt?[ "3[02#

Equation "3[02# gives an approximate solution to the nonstationary generalization of the Rayleigh
problem without the memory e}ects[ The solution "3[02# satis_es the non!slip boundary condition
at y � 9[t and when U"t# : U9\ tends to the classical solution u9[ It is worth noticing that the
solution "3[02# can be obtained otherwise using the Green function for the parabolic eqn "3[0#
with the source

1u
1t

� n
11u

1y1
¦g

t

9

dt? 0
Uþ "t#
U9

−01
1u9

1t?
¦u"y#Uþ "t#^

u0 � u9¦g
t

9

dt? g
�

9

dj g
t?

9

dtý
0
Uþ "t#
U9

−01
1u9

dtý
¦u"j#Uþ "tý#

1zpn"t?−tý#

= exp 6−
"y−j#1

3n"t?−tý#7¼
nð0 g

t

9

dt? g
t?

9

dtý $u"y#Uþ "tý#¦
Uþ "tý#
U9

1u9

1tý%
� u"y#U"t#¦g

t

9

dt?
U"t#
U9

1u9

1t?
[ "3[03#

With a simple exp!type form for the memory function instead of eqn "3[4# we get

1u
1t

�
1u
1t

"y\ 9# e−t:t¦ng
t

9

dt?
t

e−
t−t?

t

11u

1y1
"y\ t?#[ "3[04#

Taking the derivative with respect to time in eqn "3[04# the telegraph equation is derived

1u
1t

� n
11u

1y1
−t

11u

1t1
[ "3[05#

This equation is hyperbolic and describes a wave damping process on a given initial condition
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1u:1t"y\ 9# � 9[ In the framework of the developed theory instead of the solution "3[5# we can get
an approximate solution

u0 �
1u
1t

"y\ 9#t"0−e−t:t#¦n g
t

9

dt? g
t?

9

dtý
t

e−
t?−tý

t

11u

1y1
"y\ tý#[ "3[06#

Then at the plate y � 9 we have

1u0

1t
"9\ t# � Uþ "9# e−t:t[ "3[07#

Herewith\ in case when a plate is driven in motion with acceleration Uþ "t#\ the solution "3[06#
remembers only the initial value Uþ "9# which according to eqn "3[07# decays exponentially[ If the
function 11u:1y1"y\ tý# in eqn "3[06# is expended into the Taylor series in a vicinity of the point
tý � t? we can get a solution up to the value O"t#]

u0 ¼ t0
1u
1t

"y\ 9#−
1u9

1t
"y\ 9#1¦u9¦t

1u9

1t
¦O"e−t:t# :

t:9
u9[ "3[08#

So\ approximate solutions to eqn "3[03# appear to describe the internal structure e}ects as memory
which take place only at _nite accelerations[ As the structure e}ects can be displayed also through
nonlocality\ it is interesting to analyze their correlation with accelerations[

3[1[ Nonlocal effects in shear ~ow

Now consider the nonlocal extension of the problem for a structured medium ~ow with the
nonlocality parameter o ½ 0 "see Section 2[0#]

1u
1t

� n"0¦a#
1

1y g
�

9

dy?
o

e−
p

o1
"y?−y−g#1 1u

1y?
"y?\ t#[ "3[19#

The shear component of the viscous stress tension takes a form

P"y\ t# � −n"0¦a# g
�

9

dy?
o

e−
p

o1
"y?−y−g#1 1u

1y?
"y?\ t# �"0¦a# g

�

9

dy?
o

e−
p

o1
"y?−y−g#1 P9"y?\ t#[

"3[10#

The model parameters a\ g are to be de_ned[ Here instead of the model parameters S\ s we
introduce new ones] S � 0¦a\ s � g\ where a\ g are considered to be independent of y[ As o : 9
and also a\ g : 9\ eqn "3[19# leads to eqn "3[0# and P : P9[

If we want to use the classical solution as the O!order approximation for the nonlocal problem
we must remember that without the memory e}ects we cannot describe the initial stage of the
plate|s motion and satisfy the real initial conditions[ That is why we can formulate the following
problem] at time t � 9 the plate is instantaneously driven in motion with the velocity U"t#
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Uo"t#04t:�
o:9

U9 � const\ Uo"9# � U9\ Uo"9# � 9[

In such a way we can trace the terminal stage of acceleration[
Now rewrite eqn "3[19# to separate the nonlocal e}ects as follows]

1u
1t

� n
11u"y\ t#

1y1
¦No"y\ t^ a\ g#\ "3[11#

No"y\ t^ a\ g# 0 n
1

1y $"0¦a# g
�

9

dy?
o

e−
p

o1
"y?−y−g#1 1u

1y?
−

1u
1y%[ "3[12#

In the slightly nonlocal approximation "see Section 2[3# the expression "3[12# can be written in a
form

No"y\ t^ a\ g# � n $a
11u

1y1
¦g

12u

1y2% :
a\g:9

9[ "3[13#

We shall seek a solution to eqn "3[19# under conditions "3[1#\ where Uo"t# is taken instead of U9\
in a form u � u9¦8\ 8"9\ t# � 8"�\ t# � 9[t − 9[ In order to reduce the problem to the operator
form "2[07# we have to take the Green function for the parabolic eqn "3[1# with a source No

8"y\ t# � n g
t

9 g
�

9

No"j\ u^ 8"j\ u#^ a\ g#

1zpn"t−u#
e−

"y−n#1

3n"t−u# dj du[ "3[14#

The Green function being of the d!type we can get an approximate formal solution when n ð 0]

8"y\ t# � n g
t

9

No"y\ u^ 8"y\ u#^ a"u#\ g"u## du[ "3[15#

In order to de_ne the model parameters a\ g we use _rst the boundary condition 8"9\ t# � 9\
"8"�\ t# � 9 being satis_ed#

n g
t

9

No"9\ z^ 8"9\ z#^ a"z#\ g"z## dz � 9[ "3[16#

It must be pointed out that in this approximation the model parameters a\ g can be determined
only as the time!dependent functions a"t#\ g"t#[ That is why\ in order to de_ne one of them in a
correct way we must di}erentiate eqn "3[16# with respect to t]

No"9\ t^ 8"9\ t#^ a"t#\ g"t## � 9[ "3[17#

Equation "3[17# is equivalent to eqn "3[16# up to the constant[ It will be clear further that the
constant is equal to U9 � Ð�

9 Uþ "t# dt in a _rst approximation[
In addition\ we need one more condition to close the boundary value problem and to de_ne the

model parameters a\ g[ Suppose we know from the experiments or from any other considerations
the time dependence of the viscous friction on a plate
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P"9\ t# � −g
�

9

1u
1t

"y\ t# dy−PW"t# � P9"9\ t#[ "3[18#

Then from "3[17# and "3[18# we have two branching equations for the sought parameters a\ g\

F0
o "8^ a\ g# 0 n"0¦a# g

�

9 $
1

1y
e−

p

o1
"y?−y−g#1%y�9

1"u9¦8#
1y?

−Uþ "t# � 9^ "3[29#

F1
9"r^ a\ g# 0 n"0¦a# g

�

9

1y?
o

e−
p

o1
"y?−g#1 1"u9¦8#

1y?
−PW"t# � 9[ "3[20#

Now the boundary problem for eqn "3[11# and given dependences at y � 9 is reduced to the
operator eqn "3[15# and functional relationships "3[29#Ð"3[20# which entirely correspond to the
operator formulation "2[07#[

In the _rst approximation the problem is written as follows]

80"y\ t# � n g
t

9

dt"0¦a# g
�

9

dy?
o

1

1y
e−

p

o1
"y?−g#1 1u9

1y?
"y?\ t#−y9"y\ t#^ "3[21#

Uþ "t# � n"0¦a# g
�

9

dy?
o $

1

1y
e−

p

o1
"y?−g#1%y�9

1u9

1y?
^ "3[22#

PW"t# � n"0¦a# g
�

9

dy?
o

e−
p

o1
"y?−g#1 1u9

1y?
[ "3[23#

From eqns "3[22# and "3[23#\ we obtain the nonlinear equation for the sought function g"t#\ the
so!called branching equation

g
�

9

dy?
o $

1

1y
e−

p

o1
"y?−g#1%y�9

1u9

1y?

g
�

9

dy?
o

e−
p

o1
"y?−g#1 1u9

1y?

�
Uþ "t#
PW"t#

[ "3[24#

In general eqn "3[24# can have more than one solution[ In the asymptotic case when using the d!
type properties of the integral kernels\ we obtain the unique values of the parameters a\ g and\
corresponding to them\ the unique solution to the boundary problem in the _rst approximation]

g"t# �
Uþ "t#
U9

1zpnt2

D"t#
^ D"t# 0

PW"t#

P9"9\ t#
^0¦a"t# � D"t# exp 0

Uþ "t#

U1
9

pt1

D1"t#1[ "3[25#

As U"t#04
t:�

U9\ or Uþ "t# : 9\ and D"t# : 0\ the parameters a"t#\ g"t# : 9 and U0 : U9\ P0 : P9[
Further we can linearize the relations "3[25# near the solution using the slightly nonlocal

approximation "see Section 2[3#[ In this case the formulation "3[21#Ð"3[23# becomes more simple
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8"y\ t# � n g
t

9

dt 6a"t#
11u9

1y1
¦g"t#

12u9

1y2 7^ "3[26#

Uþ "t# � ng"t#
12u9

1y2
"9\ t#^ "3[27#

PW"t# �"0¦a"t##P9"9\ t#[ "3[28#

Substituting the known values of the velocity gradients into eqn "3[26#Ð"3[28# we have got a new
explicit solution to the boundary problem "3[16#\ "3[29#Ð"3[20# as o : 9]

8"y\ t# � g
t

9

dt 6"D"t#−0#
1u9

1t
¦

Uþ "t#
U9

zpn2t2
12u9

1y2 7[ "3[39#

The asymptotical values of the model parameters are unique]

g"t# �
Uþ
U9

znt2^ a"t# �
P9

W"t#−P9"9\ t#

P9"9\ t#
[

Herewith\ the shift parameter of the kernel g"t# is a measure of the thickness of a near!boundary
layer which is related to the structure e}ects and can be much thinner than the classical Prandtl
layer[

4[ Discussions of the obtained results and conclusions

First conclusions of the analysis performed in Sections 3[0Ð3[1 are enumerated]

"0# in scope of the proposed approach the integral structure e}ects manifest themselves as the
memory and nonlocal e}ects[ The special feature of the nonstationary processes is the fact
that both e}ects emerge only at _nite accelerations of a plate U"t# � 9^

"1# the nonlocal e}ects at movements with accelerations cause the medium polarization along a
direction normal to a plate "a direction of the greatest gradients#[ It is found that the shift
parameter g � 9 in the momentum relaxation transport kernel is directly proportional to the
plate acceleration] g ½ Uþ[ A medium becomes anisotropic at the cost of an asymmetry of the
viscous stress tensor^

"2# the medium anisotropy may follow from the emergence of turning moments of the medium
structure elements[ According to the results of the paper "Aero\ 0870# the turning moments
appear in the medium composed of _nite size elements under the in~uence of nonuniform
stresses[ Herewith an acceleration Uþ "t# � 9 is responsible for the rotations of structure elements
generated by the nonlocal correlations among microscopical elements of a lower scale level^

"3# during nonmonotonous acceleration of a plate when an acceleration changes sign at t � t�
and Uþ "t�# � 9\ the shift model parameter g goes to zero at a nonclassical value of the friction
on a plate D"t# � 0[ Formally the non!slip boundary condition on a plate ceases to be ful_lled\
and there arises a slip of the viscous medium on a plate[ From the mathematical point of view
this situation may be classi_ed with the degenerated one when o : 9[ It means that the obtained
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approximate solution can essentially di}er from the rigorous solution\ the approximate solu!
tion may not exist in general\ or a new solution may appear[ However\ the degeneration does
not emerge if a slip velocity on a plate exists as a model parameter[ Then the shear solution
will be considered to be the _rst!order approximate solution[ In both cases the nonclassical
solutions can exist only if some conditions on the given parameters Uþ\ D\ o are ful_lled
simultaneously[ So\ it must be emphasized that after a critical moment t� the two types of
nonclassical solutions can exist] vortical formations or rotations "g � 9#\ and shear with a slip
"g � 9#[

The results enumerated above allow explanation of the experiments described in Section 1[
When a shock wave front propagates through a material\ stress _elds with large space gradients
and deformation velocities arise[ Herewith material structure elements are caused to move in the
direction of the wave front propagation[ Due to the structure inhomogeneity each element moves
as individual micro~ow characterized by their velocity\ density\ temperature and viscosity[ Such
movement of a material corresponds to the mesostructure level described in Section 1[ At high
velocities a viscous interaction between micro~ows plays an important role[ In order to deal with
a viscous shear ~ow near the boundary of the adjacent micro~ows\ neglecting their collective
interaction and the edge e}ects\ and considering this boundary to be a plane moving in a viscous
medium\ we come to the model state of the Raleigh problem[ For the sake of simplicity assume a
limiting case where micro~ows di}er from each other by the values of densities and viscosities and
consider one of them to be solid and the other to be liquid[ The inhomogeneous behavior of the
dispersion in micro~ow velocities during the wave front propagation has been experimentally
found in Section 1[ It means that the plate acceleration relative to the liquid also has to be
inhomogeneous[ For the one!dimensional problem in a whole space without edge e}ects the
nonlocality parameter o corresponding to the relative micro~ow size should be considered small
but _nite o ð 0[ Under conditions the results enumerated in the four conclusions above and
corresponding to the slightly nonlocal approximation "see Section 2[3 and 3[1# are valid[

So\ at _nite accelerations the nonlocal e}ects cause the medium polarization and rotations of
structure elements with increase in accelerations Uþ[ When the critical moment t � t� is reached
one of the three probable solutions exists depending on combinations of the parameters U\ D\ o]

"0# in the classical solution to the Raleigh problem for continuum no structure formations are
seen^

"1# the vortical structures or rotations described above emerge^
"2# a shear of a plate with a slip relative to a viscous liquid arises[

It must be noticed that this shear arises only after the critical moment t � t� when rotations had
formed[ In alternative case new structure formations do not occur[ The space distributions of
values Uþ\ D\ o over a material has stochastic character\ hence the conditions under which all
nonclassical solutions emerge\ are also probable[ This fact has been experimentally con_rmed by
the results described in Section 1[

5[ Summary

Within the scope of the developed self!consistent nonlocal hydrodynamical theory of non!
equilibrium transport processes _rst we succeeded in determining direct relationships between



T[A[ Khantuleva\ Yu[ I[ Mescheryakov : International Journal of Solids and Structures 25 "0888# 2094Ð20182017

the nonequilibrium e}ects of memory and nonlocality leading to internal structure of medium[
Accelerations were found to cause the emergence of nonclassical solutions to the problem on a
viscous shear[ These solutions correspond to the probable formation of the new space structures
in materials during high!strain!rate processes[
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